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Outline

Review of tutorial schedule:

Part 1 The first 3 lectures were a slightly modified version of the short course I
gave at the Institute for Pure and Applied Mathematics (IPAM) summer 2005.

Lecture 1.1 Introduction to metrics and regularization: basic concepts and
connection to statistical modeling

Lecture 1.2 Metrics: examples, data fidelity terms, warping, and face
recognition

Lecture 1.3 Regularization: examples, denoising and total variation based
methods, and geometric analysis

Part 2 In these last two lectures, we will look in a bit more detail at geometric
analysis and high dimensional geometry. Given the size of the fields, this
will merely suffice to give you a brief look at a few aspects I find useful and
interesting.

Lecture 2.1 BV funtions and the TV seminorm: a path into geometric analysis.

Lecture 2.2 High Dimensional Geometry: Concentration of Measure and a wee
bit of Johnson-Lindenstrauss.
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Lecture 4: Geometric Analysis Via BV Functions

In the third lecture my stated perspective and goals were:

Perspective: geometric/analytic insights provide the power needed for creating
and understanding the best image analysis methods.

My Goal: to motivate you to learn more.

In this fourth lecture, I will look at more closely at geometric analysis,
with similar objectives:

Perspective: geometric analysis is fascinating in its own right and the theory of
the space of BV functions provides a very nice path into the subject.

My Goal: Again, it is to motivate you to learn more.
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Beginning with History: Geometric Measure theory

1960-1961 was a landmark time for geometric measure theory: Three seminal
papers appeared.

Federer and Fleming “Normal and Integral Currents” in which they introduced
k-dimensional currents, the elements of the dual space to the space of smooth
k-forms in Rn that can be seen as k-rectifiable sets with densities (multiplicities)
and an orientation. The paper appeared in 1960.

De Giorgi A paper (in Italian) including almost everywhere regularity for area
minimizing hypersurfaces. My rough translation of the paper’s title is “Oriented
Boundaries of minimal measure”. He used sets of finite perimeter for this work.
The actual date of publication was 1961.

Reifenberg “Solution of the Plateau problem for m dimensional surfaces of varying
topological type.” Almost everywhere regularity for area-minimizing surfaces of
arbitrary codimension. (codimension of A = dimension of space - dimension of
A). The paper appeared in 1960.
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Beginning with History: Geometric Measure theory

The Problem these papers were all solving was the existence and regularity of
minimal surfaces spanning a prescribed boundary.

In the figure below, we find a surface of minimal area spanning the blue boundary.
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Beginning with History: Geometric Measure theory

One approach: sets with minimizing boundaries.
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Beginning with History: Geometric Measure theory

Another approach is through mapping : what mapping from the unit disk to R3,
such that the boundary of the disck maps to the boundary in question, minimizes
the area of the image of the map?

F

We require that F : ∂D → B where B is the blue boundary. Given this condition
is satisfied, we seek the mapping F such that area(F (D)) is minimized.
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Beginning with History: Geometric Measure theory

Interesting trivia:

* “Geometric Measure Theory” was coined by Herbert Federer who would have
chosen “Geometric Integration Theory” if Hassler Whitney had not already
published a book by that title.

* One paper by Fred Almgren was both very famous and unpublished during
his lifetime. It circulated as a 1700 page(!) mimeographed tome. It was
recently published as a 955 page book. Bill Allard told me the paper was truely
magnificent: it contained 3 revolutionary new ideas, compared with for example,
Nash’s embedding paper which introduced 1 new idea.

* When Bill Allard sent his famous 1972 paper on varifolds into the Annals, they
eventually sent it back to him to referee! He did, made all the corrections
needed (he is very, very careful) and they published it.

* GMT was used by J. Cahn and J. Talyor to predict material features that were
then found.

* The classical GMT period was from about 1900 to 1960. Important contributers
include Besicovitch, Federer, Morse, Young, De Giorgi, Fleming, and Marstrand.
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Beginning with History: Geometric Measure theory

Reference: A very nice paper that I used, in conjunction with conversations with
Bill Allard, to get a history and overview of GMT is the “Questions and Answers
about Area-Minimizing Surfaces and Geometric Measure Theory” by Fred Almgren
(Proceedings of Symposia in Pure Mathematics, Volume 54 (1993), part 1). This
paper is included in the volume selected papers of Almgren’s referenced at the end
of these lectures.

Another nice paper, full of information about the modern era of geometric measure
theory is Brian White’s paper “The Mathematics of Fred Almgren, Jr.” also in the
volume edited by Jean Taylor.
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BV and TV: mostly review

What is the TV seminorm?

Answer:

TV (u, Ω) ≡
∫

Ω

|∇u|dx (1)

The dependence on Ω is suppresed if doing so will not lead to confusion.

BV (Ω) u such that TV (u) < ∞ and
∫
Ω
|u|dx < ∞ (i.e. u is in L1(Ω)).
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BV and TV: mostly review

What functions permit the calculation of TV(u)?

* ∇u has to make sense. u ∈ C1 ?

* We generalize by permiting weak derivatives. u ∈ W 1,1 ?

* We only require weak derivatives be a measure. ∇u a Radon measure!

* This turns out to be the most general choice: See Gauss-Green below.

If u ∈ C1(Ω) total variation of u =
∫
|∇u|dx

If u ∈ W 1,1 ∫
|∇u| = sup{

∫
∇u · ~gdx for |~g| < 1, ~g ∈ C1

0(Ω; Rn)} (2)

= sup{
∫

udiv~gdx for |~g| < 1, ~g ∈ C1
0(Ω; Rn)} (3)

makes sense.

Finally for u ∈ L1(Ω), we use the last equation to define
∫
|∇u|dx
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BV and TV: mostly review

What is TV (χΩ) where χΩ is the characteristic function of the set Ω?

Ω

0

1

The figure shows an approximate characteristic function; TV (χΩ) is simply the
length of the boundary of the set Ω.
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BV and TV: mostly review

What is special about TV(u)? Answer: Discontinuities are kosher:

Consider F (u) ≡
∫
|∇u|pdx

(calculate) F (u) = sp(∆x) = (s∆x)p

(∆x)p−1 = dp(∆x)1−p

(p > 1) F (u) →
∆x→0

∞ discontinuities are avoided: smooth u preferred,

(p < 1) F (u) →
∆x→0

0 discontinuities cost nothing: step u preferred,

(p = 1) F (u) = d only jump magnitude “counts”, no bias towards smooth or step.
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BV and TV: mostly review

What is special about TV(u)?

Answer: “Unimportant” parts of the boundary are ignored:

There is a set ∂∗Ω called reduced boundary of Ω that almost coincides with
the measure theoretic boundary ∂∗Ω that test functions can see. (Almost means
Hn−1almost everywhere) TV(χΩ) picks up the boundary that integration against
smooth test functions “sees”.
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BV and TV: mostly review

What is special about TV(u)?

Answer: Sets of finite perimeter are the most general sets for which the Gauss-Green
theorem holds:

∫
Ω

∇ · ~φdx =
∫

∂∗Ω

~φ · νΩdHn−1 (4)
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BV structure theorem

Radon Measures: general (but nice) measures

Define: µf(A) ≡
∫

A
fdx for any positive f in L1.Then: fdx = dµf

Roughly speaking, generalizing f gets us Radon measures.

Another view: BV functions

Typical gradient fields: ~dF (x) = ~σ(x)f(x), ~σ(x) a unit vector field, f(x) the

magnitude | ~dF (x)|. Define: the gradient measure µdF (A) ≡
∫

A
~σ(x)f(x)dx.

A BV function is one whose gradient measure can be written
∫

A
~σ(x)dµ where µ

is a Radon measure.

Rigorously: If u ∈ BV (Ω), there is a Radon measure µ and a µ-measurable function
σ : Ω → Rn such that

I |σ(x)| = 1 a.e. µ

II
∫
Ω

u∇ · φdx = −
∫
Ω

φ · σdµ

for all φ ∈ C1
c (Ω; Rn)
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Approximation properties

How well can we approximate BV functions using smooth functions?

Answer: it depends on what you mean by “approximate”. Here are two theorems.

Theorem 1. [local approximation by smooth functions] For f ∈ BV (Ω)
there exists C∞ functions {fk}∞k=1 such that:

(1) fk → f in L1(Ω) and

(2) ||∇fk|| → ||∇f || as k →∞

Theorem 2. [Weak approximation of derivatives] For each fk above define

µk(B) ≡
∫

B∩Ω

∇fkdx (5)

and

µ(B) ≡
∫

B∩Ω

d[∇f ]. (6)

Then
µk ⇀ µ (7)
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Approximation properties

where µk ⇀ µ means
∫
Ω

fdµk →
∫
Ω

fdµ for all f in Cc(Ω).

Finally, Whitney’s extension theorem permits us to get:

Theorem 3. Let f ∈ BV (Rn). Then for every ε > 0 there is a C1 function f̄
such that:

Ln{x|f(x) 6= f̄(x) or ∇f(x) 6= ∇f̄(x)} ≤ ε (8)
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Reduced Boundary and Another Structure Theorem

Suppose u = χE where E ⊂ Rn. What can we say about the ∇χE?

It should be clear by now that the ∇χE is a Radon measure concentrated on the
topological boundary of E. But we can say a great deal more.

Definition 1. [reduced boundary] If E is a set of locally finite perimeter in Rn

then we say that x ∈ Rn is in the reduced boundary, ∂∗E, if

(1) ||∇χE||(B(x, r)) > 0 for all r > 0,

(2) limr→0

R
B(x,r) νEd||∇E||

µ(B(x,r)) = νE(x), and

(3) |νE(x)| = 1.

Remark 1. [reduced boundary is “everything”?] By the Lebesgue-Besicovitch
differentiation theorem we have ||∇E||(Rn − ∂∗E) = 0. Remaining questions
include, for example, Hn−1(∂E − ∂∗E)?
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Reduced Boundary and Another Structure Theorem

Definition 2. [Approximate Tangent Planes, Half-Spaces] For x ∈ ∂∗E,
define

H(x) ≡ {y ∈ Rn|νE(x) · (y − x) = 0}, (9)

H+(x) ≡ {y ∈ Rn|νE(x) · (y − x) ≥ 0}, (10)

H−(x) ≡ {y ∈ Rn|νE(x) · (y − x) ≤ 0}, (11)

which are, respectively, the approximate tangent hyperplane and the corresponding
outside and inside closed halfspaces at x ∈ ∂∗E.

H(x)
x
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Reduced Boundary and Another Structure Theorem

Definition 3. [blowup]

Er ≡ {y ∈ Rn|r(y − x) + x ∈ E} (12)

Theorem 4. [blowups are halfspaces] For x ∈ ∂∗E,

χEr → χH−(x) in L1
loc(Rn) (13)
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Reduced Boundary and Another Structure Theorem

Theorem 5. [structure theorem for sets of finite perimeter] If E has locally
finite perimeter then

(1)

∂∗E =

( ∞⋃
k=1

Kk

)
∪N, (14)

where
||∇χE||(N) = 0 (15)

and Kk is a compact subset of a C1-hypersurface Sk (k = 1, 2, ...),
(2) νE|Sk

is normal to Sk (k = 1, 2, ...), and

(3) ||∇χE|| = Hn−1L∂∗E.
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measure theoretic boundary and Guisti’s boundary

How does the reduced boundary differ from the one that can be seen by integration
– the measure theoretic boundary? How about other definitions of boundary?

Definition 4. [measure theoretic boundary] We say that x ∈ ∂∗E, the
measure theoretic boundary of E, if

lim sup
r→0

Ln(B(x, r) ∩ E)
rn

> 0 (16)

and

lim sup
r→0

Ln(B(x, r)− E)
rn

> 0. (17)

Theorem 6. [size difference between ∂∗E and ∂∗E] If E has locally finite
perimeter:

(1) ∂∗E ⊂ ∂∗E.

(2) Hn−1(∂∗E − ∂∗E) = 0
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measure theoretic boundary and Guisti’s boundary

But there at least two other definitions of boundary we might consider.

Definition 5. [Giusti’s boundary] x ∈ ∂gE if

0 < |E ∩B(x, r)| < |B(x, r)| = ωnrn for all r > 0 (18)

Definition 6. [topological boundary] For E ⊂ Rn: x ∈ ∂E, the topological
boundary of E, if there exists points of E and Ec in B(x, r) for all r > 0.

The relationship is simple: ∂∗E ⊂ ∂∗E ⊂ ∂gE ⊂ ∂E
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Relations Between the Different Boundaries

A picture illustrating: ∂∗E ⊂ ∂∗E ⊂ ∂gE ⊂ ∂E

∂gE

∂∗E

∂E

∂∗E
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Finally: a regularity result for minimal surfaces!

Theorem 7. Suppose that E is locally minimal. Then

(1) ∂gE is analytic in a neighborhood of every point in ∂∗E and

(2) Hn−1(∂gE − ∂∗E) = 0.

25



Another approach: Currents

What are currents?

A k-dimensional integer multiplicity rectifiable current in Rn is an element of the
dual space to k-forms in Rn which can be represented by integration against an
oriented k-rectifiable subset with positive integer density. A picture:

Why use currents? Answer: triple junctions and higher codimension.

This was the path to minimal surfaces introduced by Federer and Fleming in 1960.
But this is a subject for another talk ...
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A look ahead to the fifth and final lecture

* Geometry in high dimensions: examples from spheres

* Concentration of measure: fundamental inequality

* Consequences of concentration of measure

* Projections (almost) preserving distances: Johnson-Lindenstrauss

* Application of Johnson-Lindenstrauss: Indexing and Clustering
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Lecture 5: High dimensional Geometry

As promised, we now look at some fascinating aspects of geometry in high
dimensions.

A distinction between finite and infinite dimensions is typical. I will instead dwell
on properties of high, but finite dimension.

Inspiration: David Donoho’s talk at Browder’s 2000 UCLA shindig.

Inspiration: Dimension reduction is Universal: “Everything” is high-dimensional,
yet humans seem to be able to extract useful low dimensional models and use
these effectively for various problem solving.

I will use the board a great deal during this lecture: the slides are only very(!)
cryptic notes to be filled out on the board. I plan to add notes so that the posted
version will stand alone better.
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Examples: Balls and Spheres in High Dimensions

We start by deriving answers to questions about balls and spheres in Rn. We will
be most intereted in understanding what happens as n gets large.

Compute: n-dimensional Volume of ball in Rn

Compute: (n-1)-dimensional volume of sphere in Rn

Q1: At what radius does the ball have unit volume?

Q2: At what radius does the sphere have unit n-1 volume?

Q3: What is the relationship between Vol(Sn) and Vol(Bn)?
Q4: At what radius r is Vol(Bn(r)) = εVol(Bn(1))?
Q5: How can we get the volume of a sphere from the volume of the ball?
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Concentration of Measure

We have already seen that N−1
N of the ball’s volume is contained in the outer

ε = ln N
n shell of the unit ball, that the

√
2ε neighborhood of any equator (great

circle) contains at least N−1
N of the volume of the sphere. This phenomena is

called the concentration of measure (= volume).

Now we get more general concentration inequalities via isoperimetric inequalities.

(1) Isoperimetric inequality on spheres

(2) Main result: concentration on the sphere

(i) A,B ∈ Sn , B is geodesic ball, µ(A) = µ(B) then

µ(Ar) ≥ µ(Br)∀r > 0 (19)

(ii) B ⊂ Sn a geodesic ball, µ(B) ≥ 1
2 then

1− µ(Br) ≤ e−
(n−1)r2

2 r > 0 (20)
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Concentration of Measure

(iii) Result: if µ(Ar) ≥ 1
2 then

1− µ(Ar) ≤ e−
(n−1)r2

2 r > 0 (21)

(3) Lipschitz functions on spheres: “almost” constant “almost” everywhere on Sn.
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Dimension Reduction: Johnson-Lindenstrauss Lemma

Lemma 1. [Johnson-Lindenstruass] For any 0 < ε < 1 and any integer n,
choose

k ≥ 4 ln n
ε2

2 −
ε3

3

. (22)

Then for any set V of n points in Rn, there is a projection f such that

(1− ε)||u− v||2 ≤ ||f(u)− f(v)|| ≤ (1 + ε)||u− v||2 (23)

for all u, v ∈ V .

Lemma 2. (Vempala, lemma 1.3) Let each entry of the n×k matrix R be chosen
independently from N(0, 1). Let v = 1√

k
RTu for u ∈ Rn. Then for any ε > 0,

(1) E(||v||2) = ||u||2

(2) P(|||v||2 − ||u||2| ≥ ε||u||2) < 2e−(ε2−ε3)k
4

Q1 What kinds of reductions can we get using Johnson-Lindenstrauss?

Q2 How hard is it to find a good projection?
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Johnson-Lindenstrauss Applied: Indexing and Clustering

Applications such as Latent Semantic Indexing have met with considerable success
in applications such as search engines. A matrix that represents a large number of
documents is reduced in complexity through the use of the SVD to compute a low
rank approximation.

Q1 How can the SVD be used to get a low rank approximation?

Q2 How can dimension reducing projections help reduce the computation cost in
obtaining a low rank approximation?

Q3 What is the savings?
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Summary of Part Two: Lectures 4 – 5

There is much more to say of course, but I will stop here. After all:

The secret to wearying consists in saying everything

Voltaire

Geometric Analysis: is both useful for real applications and deeply interesting in
it’s own right. I have presented a few peaks at more advanced theory in order
to inspire a more careful study.

High-dimensional Geometry: we live surrounded by data and physical reality that
is well approximated by high-dimensional models. Yet, our minds are capable
of processing and modeling the information efficiently. This suggests dimension
reduction and other simplifying approximations. Exploiting the peculiarities of
high dimensions can help us a great deal with real problems.

34



References for part II

0 I define geometric analysis more broadly than is typical: for me it refers to the geometry of sets,

functions and measures in Euclidean spaces or manifolds, with an emphasis on the connections

to, and use of, analysis as opposed to a special emphasis on topology or algebra. Accordingly,

the term refers to an organically contiguous body of knowledge and connected research threads

that includes geometric measure theory and large chunks of PDEs, harmonic analysis, variational

analysis (including nonsmooth analysis), differential geometry and nonlinear functional analysis.

1 I used both Evans and Gariepy’s (1999) “Measure Theory and Fine Properties of Functions”

and Enrico Giusti’s (1984) “Minimal Surfaces and functions of Bounded Variation” as my main

references when preparing lecture 4. A more complete list of references useful when digging into

geometric analysis include:

1 “Measure Theory and Fine Properties of Functions” (1999) Lawrence C. Evans and Ronald

F. Gariepy

2 “Minimal Surfaces and functions of Bounded Variation” (1984) Enrico Giusti

3 “Seminar on Geometric Measure Theory” (1986), Robert Hardt and Leon Simon

4 “Lectures on Geometric Measure Theory” (1983), Leon Simon

5 “Geometric Measure Theory: A Beginner’s Guide” (2000), Frank Morgan

6 “Geometric Measure Theory” (1969), Herbert Federer

7 “Geometric Measure Theory – an Introduction” (2002), Fanghua Lin and Xiaoping Yang

8 “Plateau’s Problem: An Invitation to Varifold Geometry” (1966: Revised Edition,2001), Fred
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References for part II

Almgren

9 “Selected Works of Frederick J. Almgren, Jr.” (1999) edited by Jean Taylor

10 “Geometry of Sets and Measures in Euclidean Spaces” (1995), Pertti Mattila

11 “Singular Integrals and Differentiability Properties of Functions” (1970), Elias M. Stein

11 For Background in Riemannian Geometry: “Riemannian Geometry” (1992), Manfredo

Perdigao Do Carmo

12 For Background in PDE: “Partial differential Equations” (1998), L. Craig Evans

13 For Background in Harmonic Analysis: “Fourier Analysis” (2001) Javier Duoandikoetxea

2 Other monographs of speciallized interest include: “Klaus Ecker’s Regularity theory for Mean

Curvature Flow”, Tom Ilmanen’s “Elliptic Regularization and Partial Regularity for Motion by

Mean Curvature”, Leon Simon’s “Theorems on regularity and Singularity of Energy Minimizing

Maps”, Mariano Giaquinta’s “Introduction to Regularity theory for Nonlinear Elliptic Systems”,

David and Semmes’ “Analysis of and on Unifromly rectifiable Sets”, and last but definitely not

least, Ambrosio, Fusco and Pallara’s “Functions of Bounded Variation and Free Discontinuity

Problems”.

3 Papers: the papers in the selected works of Fred Almgren’a refered to above, Allard’s papers

from the 70’s on Varifolds, and then papers refered to in the texts and monographs referenced

to above. In particular, I recommend the bibliographies from Frank Morgan’s book, the book by
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References for part II

Fanghua Lin and Xiaoping Yang, and Mattila’s book.

4 Main references for lecture 5 were “The Concentration of Measure Phenomenon” (2001) by

Michel Ledoux and “The Random Projection Method” (2004) by Santosh S. Vempala. I

also used the paper by Sanjoy Dasgopta and Anupam Gupta, “An Elementary Proof of the

Johnson-Lindenstrauss Lemma” TR-99-006, International Computer Science Institute.
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Notes for part II

1: Page 30 : The sets for which the isoperimetric inequality applies

2: Page :

3: Page :

4: Page :

5: Page :

6: Page :

7: Page :
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